Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/267 -
Telegram Group & Telegram Channel
Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/267
Create:
Last Update:

Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/267

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Knowledge Accumulator from pl


Telegram Knowledge Accumulator
FROM USA